Organic light emitting field-effect transistors (OLEFETs) are an emerging class of multifunctional optoelectronic devices that combine the electrical switching and current modulating functionalities of a field-effect transistor with the capability of electroluminescence from an organic light-emitting diode (OLED) in a single device architecture. OLEFETs have advantages over OLEDs including gate-tunable EL, minimized exciton losses, and potentially higher EL quantum efficiency inherent to device structures. As one of the simplest integrated organic optoelectronic devices possessing unique EL properties, OLEFETs have potential applications in active matrix full color electroluminescent displays, sensors, and electrically pumped organic lasers. In general, it is required that organic semiconductors in OLEFETs should possess both efficient field-effect and EL characteristics in order to achieve high device performance. Unfortunately, there are few ambipolar organic semiconductors with sufficiently high mobility and EL efficiency. Further development is limited by low field-effect mobilities of well-established OLED materials and poor EL efficiencies of outstanding OFET materials. In this project, in order to achieve efficient electroluminescence at high current densities, we introduce distributed Bragg reflector (DBR) into a bottom-gate architecture and design novel light emitting field-effect transistors with DBR as a dielectric or a DBR microcavity based on organometal halide perovskites, which have excellent physical properties, such as ambipolar carrier transport, high mobility, tunable band gap, and high luminescence efficiency. We investigate their electrical and luminescent characteristics and study the working mechanisms of the devices including charge carrier injection, transport, exciton recombination, light emission, amplified spontaneous emission, and simulated emission. It is expected to realize electrically pumped lasers in light emitting field-effect transistors based on organometal halide perovskites.
有机发光场效应晶体管集有机发光二极管的发光功能和场效应晶体管的开关功能于一体,是实现高效率高亮度电致发光,甚至电泵浦有机激光的最有效的技术途径之一。但材料是制约有机发光场效应晶体管发展的瓶颈,同时具有优良的载流子输运特性和高发光效率的有机材料几乎没有。有机金属卤化物钙钛矿独特而优良的光电特性,如双极载流子输运、高迁移率、灵活可调的直接带隙结构及高发光效率等,满足发光场效应晶体管对沟道材料的要求。本项目在制备高结晶度有机金属卤化物钙钛矿薄膜的基础上,对DBR谐振腔的光学功能与场效应晶体管绝缘栅的电学功能作一体化设计,构建新型DBR绝缘栅发光场效应晶体管和DBR微腔结构发光场效应晶体管,实现高电流密度驱动下的高效电致发光,深入认识器件工作的物理过程,澄清其中的关键物理问题,如钙钛矿的结构及形貌对载流子输运和复合发光的影响、放大自发辐射和受激辐射的增益和损耗等机制,探索实现电泵浦激光的可行途径。
本项目主要在合成二维及三维有机-无机杂化钙钛矿材料的基础上,研制了二维锡基钙钛矿场效应晶体管、混合维度的微晶铅基钙钛矿横向光电探测器及三维铅基钙钛矿二极管型光电探测器,分析了工作机理。获得的重要结果如下:..设计了一种由低k交联PVP(CL-PVP)与活性层接触构成的双层栅极电介质,CL-PVP可提供一个低极性表面,而下面高k的 PVA层可以确保高电容。采用旋涂法制备了底栅结构的 (PEA)2SnI4场效应晶体管。发现(PEA)2SnI4薄膜具有高度结晶的层状结构,有利于横向电荷载流子传输。由于(PEA)2SnI4薄膜与CL-PVP层的相容性,晶体管可以在室温空气中工作,具有p沟道特性,迁移率为0.28 cm2V−1s−1,且迟滞可以忽略。我们的工作可以将溶液处理钙钛矿和低成本已商业化的聚合物电介质集成在底栅场效应晶体管结构中,为其未来在基于溶液法的柔性光电子学中的应用提供了一个新的途径。.有机-无机钙钛矿混合维度微晶由于晶界有限和缺陷密度较低而表现出相对良好的载流子输运特性,集成了二维和单相准二维钙钛矿良好的湿度稳定性和三维钙钛矿的高光响应性在一个单独的晶体中,使之成为很有前途的高性能光电探测器的候选材料。采用反溶剂蒸气辅助法制备了横向结构的 (PEA)2(MA)4Pb5Br16微晶光电探测器,响应度为182.63 AW-1,探测率为2.511014 Jones,增益为5.58102,能探测到光功率密度低至2.47 nWcm-2的光信号。我们的研究结果表明,发展混合维度钙钛矿微晶是构造高效和稳定的光电探测器的一种很有希望的方法。.甲脒碘化铅(FAPbI3)是一种新型的光吸收材料。研制了基于一步溶液处理方法和后退火处理合成的多晶α-FAPbI3薄膜的n-i-p光电二极管型光电探测器,表现出从近紫外到近红外(330–800 nm)的宽带响应,实现了8.6×104的高开/关电流比和7.2/19.5 μs的快速响应时间。该器件具有0.95 AW−1的光响应率和2.8×1012 Jones的高比探测率,外量子效率(EQE)在650 nm照明下,在−1.0 V下接近182%。同时,发现共轭聚合物电解质PFN对p-i-n型α-FAPbI3光电探测器的整体性能既有正面的影响,也有负面的影响。研究结果对选择合适的界面材料进行光电探测器电极修饰具有重要意义。