项目摘要
Microelectronic circuits used in space applications have to be resilient against radiation effects. The concept Internet-of-Space (IoS) will support the internet access in rural regions. In order to realize this concept, it is crucial to place radiation-hard electronic chips into the orbit, where they have to work reliable. Memristive memory devices are suited for such tasks because these electrical switching properties are based on ions instead of electrons. Besides their resilient properties in terms of radiation hardness, RRAMs are also non-volatile memories (NVM). To achieve the highest reliability of the used CMOS electronics in space or other terrestrial radiation contaminated environments, it is recommendable to store the content of the complete computing system in a timely periodic secure back-up store. For this kind of back-up system RRAMs are helpful due to their radiation hardness and the non-volatility of the data stored inside the memory cells in case of a power failure. Non-volatile memory processors, consisting of RRAMs are attractive for IoS applications. In this project, we want to go a step ahead and move some of the processing load to the RRAM memory in the sense of an in-memory computing concept. The in-memory operations will be carried out in the rad-hard sense amplifiers of a RRAM array by signal evaluation and direct integration of memristive RRAM cells in the processing step. To verify the functionality of the radiation-hard system architecture, we are targeting intensive simulation work. In the simulation environment a new model for memristive devices will be used for the investigation of the complete radiation-hard system architecture using in-memory computing for fault detection.The main focus of this proposal is to explore new technological and computational ideas. The radiation hard memory approach with a new non-volatile memory concept, so called RRAM, is the core of this approach. To successfully address this objective, we are also targeting the scope: highly innovative technology leading to improvements in performance and enabling emerging internet-of-space applications.
空间应用中使用的微电路必须具有弹性效应的弹性。概念空间互联网(IOS)将支持农村地区的Internet访问。为了实现这一概念,将辐射硬质电子芯片放入轨道上至关重要,在那里它们必须可靠。回忆内存设备适用于此类任务,因为这些电气开关属性基于离子而不是电子。除了其辐射硬度的弹性特性外,RRAM还是非挥发性记忆(NVM)。为了实现空间或其他陆地辐射污染环境中使用的CMOS电子产品的最高可靠性,建议将完整计算系统的内容存储在及时的定期安全备用商店中。对于这种备份系统,由于其辐射硬度以及在电源故障的情况下存储在存储单元中的数据的不易作用,因此RRAM很有帮助。由RRAM组成的非挥发记忆处理器对iOS应用程序具有吸引力。在这个项目中,我们希望从内存计算概念的意义上向前迈进,并将某些处理负载移至RRAM内存。内存操作将通过在处理步骤中的信号评估和直接整合RRAM阵列的RAD-HARD感觉放大器进行。为了验证辐射障碍系统体系结构的功能,我们针对密集的仿真工作。在模拟环境中,使用内存计算进行故障检测的内存计算,将使用一个新的Memristive设备模型来调查完整的辐射系统体系结构。该提案的主要重点是探索新的技术和计算思想。使用新的非易失性记忆概念(所谓的RRAM)是这种方法的核心。为了成功解决这一目标,我们还针对范围:高度创新的技术,从而改善了性能并实现了新兴的空间互联网应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
数据更新时间:{{ journalArticles.updateTime }}
数据更新时间:{{ monograph.updateTime }}
数据更新时间:{{ sciAwards.updateTime }}
数据更新时间:{{ conferencePapers.updateTime }}
数据更新时间:{{ patent.updateTime }}